martes, 24 de marzo de 2009

Principio de hardy weinberg

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibrio de Hardy-Weinberg o ley de Hardy-Weinberg) establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación. Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo. Recibe su nombre del matemático inglés G. H. Hardy y del físico aleman Wilhelm Weinberg que establecieron el teorema independientemente en 1908.

En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.
ver imagen principio de Hardy Weinberg:

Ver en el siguiente link un video de este principio:

www.youtube.com/watch?v=6Kynn-mifsw

lunes, 23 de marzo de 2009

Translocación

El término translocación se utiliza cuando se presentan modificaciones en la ubicación de determinado material cromosómico. Existen dos tipos de translocaciones: recíproca y robertsoniana. En una translocación recíproca, dos cromosomas diferentes intercambian segmentos entre sí.
En una translocación robertsoniana, un cromosoma completo se adhiere a otro en el centrómero. El centromere es la parte de centro de un cromosoma que aparezca "pellizcado" entre los brazos "p" y "q".
Este nuevo cromosoma que se forma se denomina cromosoma por translocación. La translocación de este ejemplo se encuentra entre los cromosomas 14 y 21. Cuando un bebé nace con este tipo de cromosoma por translocación (entre el 14 y el 21), además de un cromosoma 14 normal y dos cromosomas 21 normales, el bebé sufrirá síndrome de Down, también denominado síndrome de Down por translocación.

Genética mendeliana

Antes de la genética mendeliana existía la pangénesis: lo que se transmitía estaba en el semen, y cada parte del cuerpo cedía algo. El semen agrupaba, por tanto, de todo un poco. Aristóteles, Lamarck, incluso Darwin, mantuvieron la pangénesis. Weismann distinguió:
  1. somatoplasma: que formaba el cuerpo.
  2. plasma germinal: era el que se transmitía a la descendencia. Se formaba en un momento determinado y ya no se volvía a modificar, ya no se volvía a pedir información a las distintas partes del cuerpo. Así, se explicaba que aunque un sujeto perdiera, por poner un ejemplo, un dedo, no tenía por ello hijos sin ese dedo.
Weismann cortó la cola a ratones durante varias generaciones, pero los ratones seguían naciendo con cola. Así, concluyó que el plasma germinal se formaría en un momento antes del nacimiento del individuo.
Gregor Mendel (1822-1894). Este monje agustino, encargado del huerto de su monasterio, decide estudiar los guisantes y sus características. Empezó a ver cosas como que cuando plantaba guisantes rugosos nacían guisantes rugosos, cuando plantaba lisos salían lisos, cuando los cruzaba bien salían rugosos bien salían lisos. Cruzó los distintos tipos y anotó todas las combinaciones. Seleccionó unos caracteres frente a los otros. Se fijó, por ejemplo, en la forma del guisante, en el tallo, en el color de las flores. La suerte que tuvo fue que seleccionó caracteres diferenciales, puros. Cuantificaba todo resultado que obtenía, todo lo expresaba en números. De sus anotaciones sacó una serie de conclusiones. Estas reglas generales fueron publicadas, pero pasaron desapercibidas. Hasta más de 60 años después no reprodujeron otros sus experiencias. Algunos investigadores estudiaron lo mismo y descubrieron que Mendel lo había hecho incluso mejor bastantes años antes. Las reglas que Mendel aplicó a las plantas son válidas para todas las especies animales y vegetales. Son, por tanto, leyes generales. Los caracteres que eligió eran cualidades puras, esto era algo que él no sabía.

  • Primera ley de Mendel

Siempre la primera generación son individuos híbridos que presentan los rasgos de uno solo de los parentales. A este parental se llamaba rasgo dominante, al otro, rasgo recesivo. Esto ocurría con cualquier rasgo (color, tamaño, etc.).
A esta primera ley podemos añadir dos excepciones:
- Dominancia incompleta: una planta puede tener flores blancas o flores carmesí. La descendencia de cruzar ambos tipos las tiene rosadas. Cuando se cruzan miembros de esta primera generación se obtienen miembros en proporción que no es 3:1, sino 1:2:1.
- Codominancia: el ejemplo típico es el de los grupos sanguíneos. Nosotros podemos tener características del padre y de la madre al mismo tiempo. No hay sólo dos tipos de grupo sanguíneo, sino 4. Los 4 tipos (establecidos por el grado de aglutinación de los glóbulos rojos) son fruto de la combinación de genes del padre y de la madre.

ver imagen:


  • Segunda ley: ley de la segregación

Los caracteres reaparecen en la segunda generación. Es decir, los caracteres `enmascarados' (recesivos) en la primera generación resurgen en la segunda. Esto se demostraba siempre que hablábamos de caracteres puros (homocigotos). La manera de saber si son homocigotos es sencilla: cruzamos con el carácter que queda enmascarado en la primera generación. Si es heterocigoto (Aa) dará la mitad de Aa y la mitad de aa. Esta técnica se llamaretrocruzamiento.

ver imagen:


  • Tercera ley de Mendel

Los caracteres se combinan independientemente. Cada pareja alélica es independiente a la hora de combinarse con otra. Esto se ve claro si tratamos 2 caracteres al mismo tiempo. Por ejemplo: tenemos ratones negros de pelo corto y ratones castaños de pelo largo, y los cruzamos. Partimos de que sus caracteres son puros.

ver imagen:



Ver en este link un video resumen de las leyes de Mendel

Genes laterales o alelos laterales

Los alelos letales son alelos mutantes que causan la muerte de los individuos.
El alelo que causa la muerte de un organismo es llamado alelo letal y el gen involucrado es llamado gen esencial. Genes esenciales son genes que al mutar pueden resultar en unfenotipo letal.
Alelo letal dominante es aquel que causa la muerte en heterocigosis. Alelo letal recesivo es aquel que causa la muerte en homocigosis.
Un ejemplo de un gen esencial, es el gen para el color amarillo del cuerpo en ratones. El color amarillo es una característica codificada por AY. Ratones genotípicamente AYAY no son viables y mueren antes del nacimiento. Ratones AY A son amarillos y ratones A A son no amarillos.
Entonces, cuando ratones amarillos son cruzados con ratones no amarillo, la progenie muestra la proporción esperada de 1:1 de ratones amarillos versus no amarillos.
Cuando los ratones heterocigotos de la generación F1 son cruzados entre sí, esperaríamos una proporción 1/4 homocigoto para el color amarillo, 1/2 heterocigoto para el color amarillo y 1/4 homocigoto para el no amarillo. Pero, los resultados obtenidos indican que dos tercios son amarillos y un tercio no son amarillos, ya que el primer 1/4 muere antes de nacer.
El alelo amarillo posee un efecto dominante sobre el alelo no amarillo, pero sucede que cuando el ratón es homocigoto para este alelo ocurre un efecto letal, en otras palabras el alelo amarillo es un alelo letalrecesivo


ver imagen:

Codigo genético

  • Caracteristicas
  1. Está organizado en tripletes o codones: cada aminoácido está determinado por tres nucleótidos. Teniendo en cuenta que existen cuatro ribonucleótidos diferentes (U, C, A y G), hay 43 = 64 tripletes distintos.
  2. El código genético es degenerado: un mismo aminoácido puede estar determinado por más de un triplete o codón. Debido a que existen 64 tripletes distintos y hay solamente 20 aminoácidos diferentes.
  3. Es un código sin superposición o sin solapamientos: dos aminoácidos sucesivos no comparten nucleótidos de sus tripletes.
  4. La lectura del ARN mensajero es continua, sin interrupciones. Cualquier pérdida o ganancia de un sólo ribonucleótido produce a partir de ese punto una modificación de la pauta de lectura, cambiando todos los aminoácidos desde el lugar de la alteración.
  5. El triplete de iniciación suele ser AUG que codifica para Formil-Metionina. También pueden actuar como tripletes de iniciación GUG (Val) y UGG (Leu) aunque con menor eficacia.
  6. Existen tres tripletes sin sentido o de terminación que no codifican para ningún aminoácido: UAA (ocre), UAG (ambar) y UGA.
  7. Universalidad: El código genético Nuclear es universal coincidiendo en todos los organismo estudiados hasta la fecha. La única excepción a la universalidad del código genético es el Código Genético Mitocondrial.


ver imagen:

  • Mutuaciones

En genética y biología, la mutación es una alteración o cambio en la información genética (genotipo) de un ser vivo y que, por lo tanto, va a producir un cambio de características, que se presenta súbita y espontáneamente, y que se puede transmitir o heredar a la descendencia. La unidad genética capaz de mutar es el gen que es la unidad de información hereditaria que forma parte del ADN. En los seres multicelulares, las mutaciones sólo pueden ser heredadas cuando afectan a las células reproductivas. Una consecuencia de las mutaciones puede ser una enfermedad genética, sin embargo, aunque en el corto plazo puede parecer perjudiciales, a largo plazo las mutaciones son esenciales para nuestra existencia. Sin mutación no habría cambio y sin cambio la vida no podría evolucionar.
Según el mecanismo que ha provocado el cambio en el material genético, se suele hablar de tres tipos de mutaciones: mutaciones cariotípicas o genómicas, mutaciones cromosómicas y mutaciones génicas o moleculares. En el siguiente cuadro se describen los diferentes tipos de mutaciones y los mecanismos causales de cada una de ellas:


ver imagen:



1. Mutaciones Genéticas o Moleculares:
Entre las mutaciones génicas podemos distinguir:

- Mutación por sustitución de bases: Se producen al cambiar en una posición un par de bases por otro (son las bases nitrogenadas las que distinguen los nucleótidos de una cadena). Distinguimos dos tipos que se producen por diferentes mecanismos bioquímicos:o Mutaciones transicionales o simplemente transiciones, cuando un par de bases es sustituido por su alternativa del mismo tipo. Las dos bases púricas son adenina (A) y guanina (G), y las dos pirimídicas son citosina (C) y timina (T). La sustitución de un par AT, por ejemplo, por un par GC, sería una transición.o Mutaciones transversionales o transversiones, cuando un par de bases es sustituida por otra del otro tipo. Por ejemplo, la sustitución del par AT por TA o por CG.
- Mutaciones de corrimiento estructural, cuando se añaden o se quitan pares de nucleótidos alterándose la longitud de la cadena. Si se añaden o quitan pares en un número que no sea múltiplo de tres (es decir si no se trata de un número exacto de codones), las consecuencias son especialmente graves, porque a partir de ese punto, y no sólo en él, toda la información queda alterada. Hay dos casos:o Mutación por pérdida o deleción de nucleótidos: En la secuencia de nucleótidos se pierde uno y la cadena se acorta en una unidad.o Mutación por inserción de nuevos nucleótidos: Dentro de la secuencia del ADN se introducen nucleótidos adicionales, interpuestos entre los que ya había, alargándose correspondientemente la cadena.
- Mutaciones en los sitios de corte y empalme (Splicing)Las mutaciones de corrimiento del marco de lectura también pueden surgir por mutaciones que interfieren con el splicing del ARN mensajero. El comienzo y final de cada intrón en un gen están definidos por secuencias conservadas de ADN. Si un nucleótido muta en una de las posiciones altamente conservada, el sitio no funcionará más, con las consecuencias predecibles para el ARNm maduro y la proteína codificada. Hay muchos ejemplos de estas mutaciones, por ejemplo, algunas mutaciones en el gen de la beta globina en la beta talasemia son causadas por mutaciones de los sitios de splicing.


ver imagen:





2. Mutaciones Cromosómicas o Estructurales:
Son los cambios que afectan a la secuencia de los hipotéticos fragmentos en que podría subdividirse transversalmente un cromosoma. Muchas de ellas son apreciables al microscopio gracias a la “técnica de bandas” con la que se confecciona el cariotipo. Sobre las mutaciones cromosómicas encontramos:


- Mutación por inversión de un fragmento cromosómico. Es el cambio de sentido de un fragmento del cromosoma.
- Mutación por deleción o pérdida de un fragmento cromosómico.
- Mutación por duplicación de un fragmento cromosómico. Suelen estar asociadas casi siempre con deleciones en otro cromosoma.
- Mutación por translocación de un fragmento cromosómico. Es decir por un cambio en la posición de un fragmento cromosómico. La translocación puede ocurrir en un solo cromosoma, entre cromosomas homólogos o entre cromosomas diferentes.

ver imagen:



3. Genómicas o Numéricas:
Son las mutaciones que afectan al número de cromosomas o todo el complemento cromosómico (todo el genoma).

- Poliploidía: Es la mutación que consiste en el aumento del número normal de “juegos de cromosomas” . Los seres poliploides pueden ser autopoliploides, si todos los juegos proceden de la misma especie, o alopoliploides, si proceden de la hibridación, es decir, del cruce de dos especies diferentes.

- Haploidía: Son las mutaciones que provocan una disminución en el número de juegos de cromosomas.

- Aneuploidía: Son las mutaciones que afectan sólo a un número de ejemplares de un cromosoma o más, pero sin llegar a afectar al juego completo. Las aneuploidías pueden ser monosomías, trisomías, tetrasomías, etc, cuando en lugar de dos ejemplares de cada tipo de cromosomas, que es lo normal, hay o sólo uno, o tres, o cuatro, etc.



Traducción

La traducción es el paso de la información transportada por el ARN-m a proteína. La especificidad funcional de los polipéptidos reside en su secuencia lineal de aminoácidos que determina su estructura primaria, secundaria y terciaria. De manera, que los aminoácidos libres que hay en el citoplasma tienen que unirse para formar los polipéptidos y la secuencia lineal de aminoácidos de un polipéptido depende de la secuencia lineal de ribonucleótidos en el ARN que a su vez está determinada por la secuencia lineal de bases nitrogenadas en el ADN.
Los elementos que intervienen en el proceso de traducción son fundamentalmente: los aminoácidos, los ARN-t (ARN transferentes), los ribosomas, ARN-r (ARN ribosómico y proteínas ribosomales), el ARN-m (ARN mensajero), enzimas, factores proteicos y nucleótidos trifosfato (ATP, GTP).
El primer paso que tiene que producirse es la activación de los aminoácidos y formación de los complejos de transferencia. Los aminoácidos por sí solos no son capaces de reconocer los tripletes del ARN-m de manera que necesitan unirse a un ARN de pequeño tamaño (constante de sedimentación 4S) llamado ARN adaptador, ARN soluble oARN transferente. Crick (1958) postuló la necesidad de la existencia de un adaptador que acoplará cada aminoácido a su correspondiente codón.

ver imagen:
video

Transcripción

La transcripción del ADN es el primer proceso de la expresión genética, mediante el cuál se transfiere la información contenida en la secuencia del ADN hacia la secuencia de proteínautilizando diversos ARN como intermediarios. Durante la transcripción genética, las secuencias de ADN son copiadas a ARN mediante una enzima llamada ARN polimerasa que sintetiza un ARN mensajero que mantiene la información de la secuencia del ADN. De esta manera, la transcripción del ADN también podría llamarse síntesis del ARN mensajero.

ver imagen:


video